Lecture Notes for Abstract Algebra: Lecture 10

1 Dihedral groups

Suppose that we have number the vertices of a regular n-gon by $\{1,2, \ldots, n\}$. Notice that there are exactly n choices to replace the first vertex. If we replace the first vertex by k, then the second vertex must be replaced either by vertex $k+1$ or by vertex $k-1$ (to be a rigid motion); hence, there are at most $2 n$ possible rigid motions of the regular n-gon. The group of symmetries of the regular n-polygon is denoted by \mathbb{D}_{n}.

Let us denote, for $k=0,1, \ldots, n-1$, by r_{k} the counter-clock rotation with angle

$$
\theta_{k}=\frac{360^{\circ} k}{n} .
$$

Also, for $k=1,2, \ldots, n$, we denote by s_{k}, the reflexion around the axis of symmetry through vertex k. If k is even there are only $n / 2$ such different reflexions. On the other hand if k is odd, there will be n such reflexions. The reflexions s_{k} satisfy $s_{k}^{2}=1$ and the rotation $r_{k}^{n}=1$. We denote $s_{1}=s$ and $r_{1}=r$.

Lemma 1. The elements r, s satisfy the relation $s r^{j}=r^{-j} s$.
Proof. Let s be the reflection around the axis of symmetry through vertex 1. Take any vertex k and consider the action of both maps on $k \bmod n$:

$$
s r^{j}(k) \equiv s(k+j) \equiv 2-k-j \equiv r^{-j}(2-k) \equiv r^{-j} s(k)
$$

And this would take care of the relation we wanted to prove.
Theorem 2. The group \mathbb{D}_{n}, with $n \geq 3$, consists of all products of the two elements r and s, satisfying the relations

$$
r^{n}=1, \quad s^{2}=1 \quad \text { and } \quad \text { srs }=r^{-1} .
$$

Proof. Any rigid motion t of the n-gon replacing the first vertex by the vertex k, must replace the second vertex by an adjacent vertex to k. If the second vertex goes to $k+1$, then $t=r^{k}$. If the second vertex is replaced by $k-1$, then $t=r^{k} s$. Hence, r and s generate \mathbb{D}_{n} and

$$
\mathbb{D}_{n}=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, r s, \ldots, r^{n-1} s\right\}
$$

by lemma 1 .

Remark 3. The rotation r_{k} admits a matrix representation:

$$
r_{k}=\left(\begin{array}{cc}
\cos \left(\frac{360^{\circ} k}{n}\right) & -\sin \left(\frac{360^{\circ} k}{n}\right) \\
\sin \left(\frac{360^{\circ} k}{n}\right) & \cos \left(\frac{360^{\circ} k}{n}\right)
\end{array}\right)
$$

We can check that the matrices that we obtain in this case are elements of $\mathrm{Sl}_{2}(\mathbb{R})$. In general we say that we have a representation of a group G when we have a good map (group homomorphism)

$$
\rho: G \longrightarrow \mathrm{Gl}(V),
$$

for a vector space V over \mathbb{C}. When the dimension of V is 1 , this particular case of representation is called a character.

Practice Questions:

1. Find a 2-dimensional matrix representation for the reflexions of \mathbb{D}_{n}.
